
REPORT DOCUMENTATION PAGE 
Form Approved 

OBM No. 0704-0188 

Public reporting burden for this collection ot information Is estimated to average 1 hour per response, including the time for reviewing instructions.^se^cranj| eMsnng oaia^ouru*, 
gatherirwand maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this bu den onany f^r^P^0''"^1^'0" 
of inforrnaion, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports. 1215 Jefferson Davis 
Hiahwav Suite 1204 Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

TWO 

3. REPORT TYPE AND DATES COVERED 

Contract Report 

4. TITLE AND SUBTITLE 

A Scalable Implementation of the NRL Layered Ocean Model 

5. FUNDING NUMBERS 

Job Order No. 

Program Element No. 062435N 

Project No. 

Task No. 

Accession No. 

6. AUTHOR(S) 

Alan J. Wallcraft and Daniel R. Moore 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Planning Systems, Inc. 
Slidell, Louisiana 70458 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES) 

Naval Research Laboratory 
Oceanography Division 
Stennis Space Center, MS 39529-5004 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

NRL/CR/7323--96-0006 

11. SUPPLEMENTARY NOTES 

Contract No. N00014-92-D-6008 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

This report describes the portable scalable implementation of the NRL Layered Ocean Model (NLOM). Scalability is based 
primarily on the tiled data parallel parallel programming paradigm. This is sufficiently general that the actual technique used on 
a given machine to obtain scalability can be selected at compile time from: (i) data parallel, (ii) SPMD message passing, (iii) 
autotasking, or (iv) SPMD message passing between multi-processor autotasked systems. The code is thus portable onto all 
machine types likely to be used by ocean modelers. 

19971010 038 
14. SUBJECT TERMS 

ocean modeling, scalability, data parallel, message passing, and autotasking 

15. NUMBER OF PAGES 

34 

16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

I                  Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

20. LIMITATION OF ABSTRACT 

SAR 

NSN 7540-01-280-5500 

HC QUALITY mSrEGHi 'iUli «S 

Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-1B 
298-102 



0 1 
4 

NAVAL RESEARCH LABORATORY 

Washington, D.C 20375-5320 

NRL Report: CR 7323-96-6005 
0OO& 

A Scalable Implementation of the NRL Layered Ocean Model 

Alan J. Wallcraft and Daniel R. Moore 
Planning Systems, Inc. 

Prepared for the Ocean Dynamics & Prediction Branch 
Contract # N0014 - 92 - D - 6008 

(Printed April 3, 1997) 

Abstract 

This report describes the portable scalable implementation of the NRL 
Layered Ocean Model (NLOM). Scalability is based primarily on the tiled 
data parallel parallel programming paradigm. This is sufficiently general that 
the actual technique used on a given machine to obtain scalability can be 
selected at compile time from: (i) data parallel, (ii) SPMD message passing, 
(iii) autotasking, or (iv) SPMD message passing between multi-processor au- 
totasked systems. The code is thus portable onto all machine types likely to 
be used by ocean modelers. 

Subject Terms 

Ocean Model, Scalable, Data Parallel, Message Passing, Autotasking 

PEG QXMLmr ntrcPEnircD a 
Approved for public release; distribution unlimited 



CONTENTS 

EXECUTIVE SUMMARY  E-l 

1. INTRODUCTION  1 

2. DISTRIBUTED MEMORY PROGRAMMING STYLES  2 

2.1 Data Parallel  2 
2.2 Tiled Message Passing  3 
2.3 Tiled Data Parallel  5 

3. NLOM IMPLEMENTATION  6 

3.1 Example of Autotasking Code  6 
3.2 Example of Tiled Data Parallel Code     7 
3.3 Communication Subroutines     11 
3.4 Parallel I/O  18 
3.5 Serial Optimizations  19 
3.6 Cache Management  21 
3.7 Parallelizing the Capacitance Matrix Technique  23 

4. NLOM PERFORMANCE  25 

5. SUMMARY  30 

6. ACKNOWLEDGEMENTS  30 

7. REFERENCES  30 

IV 



EXECUTIVE SUMMARY 

This report describes the portable scalable implementation of the NRL Layered Ocean Model 
(NLOM). Scalability is based primarily on the tiled data parallel parallel programming paradigm. 
This is sufficiently general that the actual technique used on a given machine to obtain scalability 
can be selected at compile time from: (i) data parallel, (ii) SPMD message passing, (iii) autotasking, 
or (iv) SPMD message passing between multi-processor autotasked systems. The code is thus 
portable onto all machine types likely to be used by ocean modelers. 

Techniques generally applicable to ocean models on distributed memory machines are first in- 
troduced using a simple example. This is extended to a practical case by examining the actual 
source code for one subroutine from the original (autotasked) and scalable NLOM implementa- 
tions. These are very similar, because distributed memory aspects are encapsulated in a suite of 
communication subroutines. The three versions (data parallel, autotasked, message passing) of a 
representative communication subroutine are presented and discussed. The original NLOM im- 
plementation was primarily optimized for vector parallel systems. Several new optimizations have 
been added to the scalable implementation to allow for the relatively small cache and low memory 
bandwidth of RISC-based systems. 

The high performance of NLOM depends critically on the use of a semi-implicit time step, and 
solving the consequent external gravity mode Helmholtz's equation using the Capacitance Matrix 
Technique (CMT). The scalable CMT implementation is described, including the "pipelining" 
method used to obtain scalability without sacrificing numerical repeatability no matter how many 
processors are involved. 

There are currently no standard methods for implementing general parallel I/O. The scalable 
NLOM code uses separate files for "scalar" and "array" data. This allows a degree of parallel I/O 
to array files on some machines, while preserving full portability between machines. 

The scalable NLOM implementation has achieved its design goals of running exactly the same 
model source code and model data files on a wide range of computer systems from many vendors. 
Times from actual practical model runs presented in this report demonstrate good scalability across 
the range of processor complexes available within DoD today. As larger machines become available, 
problem sizes (i.e. model resolution) will increase and scalability should be possible up to at least 
2048 processors. 

E-l 



A Scalable Implementation of the NRL Layered Ocean Model 

1. INTRODUCTION 

The NRL Layered Ocean Model, NLOM, has been under continuous development for 20 years 
[8], [15], [12]. The Users Guide [15] describes the model at the time the guide was released, and is 
still the primary reference for the model formulation. A new implementation of horizontal diffusion 
and a discussion of the model formulation in spherical coordinates can be found in Moore and 
Wallcraft [12]. Here we describe the techniques used to make the model's implementation (source 
code) portable to all major computer architectures and to several scalable programming styles. 
Many of the techniques described will be applicable to other ocean models. 

The original implementation was targeted to SMP (shared memory parallel) systems, and in 
particular to PVP (parallel vector processors) where each CPU is a vector processor. This was 
the dominant supercomputer architecture throughout the 1980's, and is still used in machines such 
as Cray's C90 today. The model was written in standard Fortran 77 using a coding style that 
allowed compilers to automatically run loop nests in parallel across multiple processors, while still 
automatically vectorizing inner loops. The compiler technology involved is known as autotasking 
in Cray compilers. It is available in the Fortran compilers from all major vendors of SMP systems, 
and this has allowed the original ocean model implementation to run efficiently on a wide range of 
shared memory machines, from workstations to supercomputers. 

SMP systems are limited by the need to have uniform access from each processor to each 
element in memory, which is only cost effectively implementable for a maximum of 16, or perhaps 
32, processors. Distributed memory architectures make memory local to the processors. This 
allows scalability to hundreds of processors, but at the expense of all or part of hardware support 
for the uniform shared memory programming style. On non-uniform memory access (NUMA) 
systems, all memory is accessible (without remote processor involvement) from all processors, but 
access speeds are faster (perhaps much faster) for local memory. Many distributed systems do not 
implement a shared memory at all, requiring messages to be transfered over a network to access 
another processor's memory typically with the cooperation of the remote processor. It has so far 
proved impossible, in general, to take existing "dusty deck" shared memory source code and have a 
compiler automatically produce an efficient distributed memory version. This is the case even if the 
original source was optimized for SMP systems and the target is a cluster of SMP machines with 
a NUMA global shared memory, and these are the most similar shared and distributed memory 
designs. The problem is that compilers are best at local optimizations (e.g. DO-loop or subroutine 
level), but efficient use of a distributed memory requires global decisions about how memory is 
used. 

Since distributed memory systems are almost certain to be the fastest available for ocean 

Manuscript approved to be reviewed. 
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modeling over the next 10 years, an implementation of NLOM that can run efficiently on these 
machines has been produced. Just as the original vector/parallel implementation ran with reason- 
able efficiency on any single processor or SMP system, an important design goal for the scalable 
implementation is that it be reasonably efficient on any computer system likely to be used for ocean 
modeling: workstations, workstation clusters, SMP systems, SMP clusters, vector, vector-parallel, 
and massively parallel computer systems. This allows a single source code to be used across all 
machine types, greatly simplifying maintenance and the development of new features. 

2. DISTRIBUTED MEMORY PROGRAMMING STYLES 

2.1 Data Parallel 

One approach for distributed memory machines that retains the idea of a global shared memory 
is data parallel programming. High Performance Fortran (HPF) is an extension to Fortran 90 
implementing the data parallel approach [9]. It consists of a standard set of functions, compiler 
directives, and a very few language extensions. The language extensions have been included in 
Fortran 95, so a HPF program is also a Fortran 95 program (i.e. is portable to any machine with a 
Fortran 95 compiler). HPF is based on CM Fortran, which is a data parallel language for the CM5. 
The first distributed memory implementation of NLOM was written in CM Fortran, and could 
also run on any machine with a Fortran 90 compiler. The code was completely different from the 
original SMP Fortran 77 version, because CM Fortran requires all parallel operations be expressed 
using Fortran 90 array expressions. CM Fortran also requires the addition of directives that tell the 
compiler how to layout arrays across the distributed memory. These directives do not change the 
meaning of the program, but they have a very large effect on performance. Optimization for the 
CM5 (or any data parallel machine/language) is largely involved with getting memory layout right. 
In principle, the required array syntax could be automatically generated from the Fortran 77 model 
code. However, the current generation of tools cannot do this, despite the basic self similarity of 
finite difference codes. Consider the following simple code fragment: 

REAL   A(IH+1,JH),DA(IH+1,JH),DX 

INTEGER I,J 

DO J= l.JH 

DO 1= l.IH 
DA(I,J) = DX*(A(I+1,J) - A(I,J)) 

ENDDO; ENDDO 

The arrays A and DA have been extended by a one column "halo" to allow a clean implementation 
of a periodic boundary. On entry A(IH+1,:) must be identical to A(l,:), and at some later phase 
in the program this condition would be explicitly applied to DA also. The equivalent CM Fortran 
is: 

REAL A(IH,JH),DA(IH,JH),DX 

CMF$  LAYOUT A(:NEWS,:NEWS),DA(:NEWS,:NEWS) 
DA = DX*(CSHIFT(A,SHIFT=+1,DIM=1) - A) 

Automatic converters might be able to handle this simple example, but in an actual code the use 
of a halo to handle periodic boundaries would not be correctly converted to a CSHIFT on an array 
without a halo. The arrays A and DA are no longer extended by one column, because the CSHIFT 
(periodic, or circular, shift) array operation is a one to one mapping to periodic boundary conditions. 
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The LAYOUT directive distributes each 2-D array across a 2-D grid of processors, i.e. if the grid 
is MP by NP, the M,N processor contains the sub-array A( M0+1:M0+IHP, N0+1:N0+JHP ) where 
IHP=IH/MP, JHP=JH/NP, M0=(M-1)*IHP and N0=(N-1)*JHP. Under the data parallel approach, 
the owner of the assigned value calculates that value and off-chip values are copied as required. 
Thus the CSHIFT operation involves communication, and an advantage of using CSHIFT or EOSHIFT 
in a data parallel code is that it makes this communication explicit. The data parallel programming 
model works as if all non-array operations are performed on one processor and the result broadcast 
to all others. A data parallel compiler can have each processor simultaneously calculate such values 
instead, providing the effect is the same as broadcasting the result from a single processor. 

The data parallel approach is similar to autotasking, in that parallelization is a local process. 
This implies that autotasking compilers could certainly be extended to parallelize arbitrary array 
expressions. Therefore, HPF (or CM Fortran) codes are in principle portable to almost any machine 
design. The CM Fortran implementation of NLOM is in fact a legal Fortran 90 code, so it can be 
run on a Cray C90 (say) or a workstation with a Fortran 90 compiler. The problem with using 
HPF for a portable code is efficiency: 

• HPF requires communication for almost every array expression. 

• Different LAYOUT configurations may be optimal on different machines, i.e. difficult to write 
portable optimized HPF. 

• Data parallel codes tend to use many array temporaries. 

• Data parallel codes are typically written to be scalable to a large number of processors. This 
almost always involves additional floating point operations, and these reduce performance on 
machines with a small number of processors. 

• A single nested DO-loop is typically equivalent to several array operations, reducing optimiza- 
tion opertunities. 

• Current Fortran 90 compilers produce better code for DO loops than for array expressions. 

Some of these limitations will be significantly reduced as compilers improve. On SMP machines, 
a smart compiler might eventually be able to make a collection of data parallel array expressions as 
efficient as a similar set of nested DO loops. However, the data parallel version will probably still 
require more memory. On distributed memory machines, a simplistic HPF compiler only works well 
if remote memory access is very fast (as it can be on a data parallel machine such as the CM5, or 
on most NUMA systems). More sophisticated compilers can try to cache selected remote memory 
values to reduce network traffic. 

After producing a working data parallel version of NLOM [14], it became clear that it was too 
slow and memory hungry to replace the existing version on SMP systems. The data parallel version 
worked well on the CM5, but maintaining two separate versions of an ocean model that is itself 
under continuous development was a serious maintenance headache. Moreover, HPF compilers for 
new distributed memory systems (such as the T3D) were incomplete and not sufficiently robust to 
allow easy and early migration to each new system. 

2.2 Tiled Message Passing 

Message passing libraries can be considered the assembly language of distributed memory 
machines. For ocean models, message passing is typically used via the domain decomposition SPMD 
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(Single Program Multiple Data) programming style. The domain is divided into approximately 
equally sized pieces, one per processor, and each processor runs the same program over its piece of 
the domain, calling a message passing library to obtain values from other sub-domains. All scalar 
calculations, i.e. those not acting directly on model domain fields, are calculated separately on 
each processor. This implies that in practice SPMD must use a homogeneous set of processors, 
otherwise the scalar calculations could diverge. Efficiency and program transparency is enhanced 
by including a halo (or fake zone, or ghost points) of nearby points, which allows existing finite 
difference code to be used almost without change provided the halo is updated, via message passing, 
at appropriate intervals. Consider our simple code fragment: 

REAL   A(IH+1,JH),DA(IH+1,JH),DX 

INTEGER I,J 

DO J= 1,JH 

DO 1= i.IH 
DA(I.J) = DX*(A(I+1,J) - A(I,J)) 

ENDDO; ENDDO 

To convert to domain decomposition, add a halo on all sides and have the array otherwise extend 
over the sub domain only: 

REAL   A(0:IHP+1,0:JHP+1),DA(0:IHP+1,0:JHP+1),DX 

INTEGER I,J 

DO J= l.JHP 

DO 1= l.IHP 
DA(I,J) = DX*(A(I+1,J) - A(I,J)) 

ENDDO; ENDDO 

A 2-D, MP by NP, grid of processors are all running this identical program, with IHP=IH/MP and 
JHP=JH/NP. Provided the halo is up to date, the code fragment calculates the required values over 
the subdomain owned by this processor. Note that no knowledge is required about which subdomain 
is being calculated. This is all handled by the message passing and I/O routines which would need 
to be added to the original code. 

This is actually a special case of domain decomposition, tiling, that is applicable to all finite 
difference ocean models. The sub-regions are rectangular and halos have a simple mapping onto 
nearby processors. If the tiles are all the same size (as they are here) this gives a mapping of arrays 
to processors that is very similar to the data parallel approach. Data parallel codes don't have to 
explicitly include a halo, but halos (invisible to the programmer) are one technique a data parallel 
compiler can use to cache frequently accessed off-processor memory locations. 

Converting an existing autotasked code to use the tiled message passing approach has a mini- 
mal effect on SMP performance, since when compiled for a single tile covering the entire region the 
original code is effectively used except for a few calls to update the tile halos. Note that in the single 
tile mode, halo updates do not involve message passing and can include periodic boundary condi- 
tions. However, if an existing code cannot autotask efficiently, then the only SMP parallelization 
option with this approach is to message pass between multiple tiles on the same SMP machine, and 
current message passing libraries are not efficient when running in a multi-user SMP environment. 

Overall, tiled message passing is a viable approach to portability. Certainly more viable today 
than the data parallel approach. It does have some disadvantages: 
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• Message passing is inefficient on data parallel machines, such as the CM5. 

• All non-local operations require a subroutine call, e.g. AIJ = A(I,J) becomes 
CALL XCEGETCAIJ, A,I, J), and XCEGET must be coded using message passing. 

• Debugging is difficult. In particular, the correctness of a single tile code does not imply that the 
corresponding multi-tile code is correct. Data parallel codes can in principle be fully debugged 
on a single processor. 

• Message passing is not efficient on a multi-user SMP system, although autotasking may reduce 
the importance of this fact. 

2.3 Tiled Data Parallel 

It is possibile to combine the tiled message passing and data parallel methods. Consider our 
simple code fragment: 

REAL   A(IH+1,JH),DA(IH+1,JH),DX 

INTEGER I,J 

DO J= 1,JH 

DO 1= i.IH 
DA(I,J) = DX*(A(I+1,J) - A(I,J)) 

ENDDO; ENDDO 

In tiled data parallel form, for CM Fortran, this becomes: 

REAL        DX 
REAL   A( 0:IHP+1,0:JHP+1,MP,NP) 
REAL   DA(0:IHP+1,0:JHP+1,MP,NP) 

CMF$  LAYOUT A( :SERIAL,:SERIAL,:NEWS,:NEWS) 

CMF$  LAYOUT DA(:SERIAL,:SERIAL,:NEWS,:NEWS) 

INTEGER I.J.M.N 

DO N= 1,NP 

DO M= l.MP 
DO J= l.JHP 

DO 1= 1,IHP 
DA(I,J,M,N) = DX*(A(I+1,J,M,N) - A(I,J,M,N)) 

ENDDO; ENDDO; 

ENDDO; ENDDO; 

If MP and NP are both 1, this is functionally identical to the message passing code fragment. If 
MPxNP represents the number of processors (or, on the CM5, the number of vector units), this is 
data parallel and the compiler does not need to generate any off-chip communication. In principle, 
a tiled data parallel code should be as fast or faster than the corresponding native data parallel 
code, because it does less communication unless the compiler is caching off-chip values. However, 
the speed of a tiled data parallel code depends on how well the compiler handles serial, i.e. on-chip, 
operations and CM Fortran's serial optimizations are currently quite limited. Since CM Fortran 
requires array syntax, the CMAX preprocessor must be invoked on the CM5, as part of the compile 
phase, to convert the DO-loop nest to an array expression: 

DA(1:IHP,1:JHP,:,:)  = DX*(A(2:IHP+1,1:JHP,:,:)  - 
& A(1:IHP,     1:JHP,:,:)     ) 
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This is unnecessary in HPF, which will directly parallelize the DO loops. 

The tiled data parallel programming style adds more boiler plate to the original code, to 
handle the tile number dimensions, but can use message passing to update halos etcetera and is 
in every way functionally equivalent to the standard tiled message passing style. It can also run 
on data parallel machines/compilers, using data parallel constructs in communication subroutines. 
Disadvantages include: 

• Boiler plate reduces clarity, when compared to either native data parallel or tiled message 
passing codes. 

• All non-local operations require a subroutine call, e.g. AIJ = A(I,J) becomes 
CALL XCEGET(AIJ, A,I, J), and XCEGET must be coded using both data parallel and message 
passing. 

On SMP machines autotasking can occur at the block level (outermost loop) even if the original 
code did not autotask, and the multi-tile code can be debugged on a single processor (except for 
the message passing communication routines). 

The NLOM is now implemented in the tiled data parallel style, and this single code has replaced 
the original separate SMP and data parallel versions. 

3. NLOM IMPLEMENTATION 

3.1 Example of Autotasking Code 

Consider a single subroutine, used as part of the pressure gradient calculation, from the original 
NLOM implementation. 

SUBROUTINE MHMVP0(DV, PTO.HHYTO, QTDTDY) 

IMPLICIT NONE 

INTEGER   IH.JH 
PARAMETER (IH=515, JH=287) 

C 

REAL QTDTDY 

REAL DV(IH,JH),PT0(IH,JH),HHYT0(IH,JH) 

C 

INTEGER       IFU,IFV,IFH,IFS,ILU,ILV,ILH,ILS 

COMMON/ZILOOP/ IFU(JH),IFV(JH),IFH(JH),IFS(JH), 

& ILU(JH),ILV(JH),ILH(JH),ILS(JH) 

SAVE /ZILOOP/ 

C 

C    V MOMENTUM EQUATION - PRESSURE GRADIENT TERM. 

C 
INTEGER I,J 

DO J= 2.JH-2 

DO 1= IFV(J),ILV(J) 

DV(I,J) = DV(I,J) - 
k    QTDTDY*(PTO(I,J+l) - PT0(I,J))*HHYT0(I,J) 
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ENDDO; ENDDO 

RETURN 

END 

The subroutine is acting on a single layer of a multi-layer model, so the subroutine would be called 
once for each layer with only horizontal slices of the full arrays passed via the argument list. All low 
level routines in the ocean model act this way. It allows workspace arrays, e.g. DV and HHYTO, 
to be two dimensional. A typical call to this subroutine might be: 

CALL MHMVPOCDV,  P(1,1,NT0,K),HHYTO,  QTDTDY) 

where NTO represents the time level and K represent the layer. This takes advantage of Fortran 77's 
ability to treat an array element as the starting point of an array slice. In Fortran 90, and CM 
Fortran, the slice would be made explicit: 

CALL MHMVPO(DV, P(:,:,NTO,K),HHYTO, QTDTDY) 

The subroutine is configured to vectorize the I-loop and autotask the J-loop. The inner loop does 
not cover the full array. Instead, it skips all calculations on [1:IFV(J)-1, J] and [ILV(J)+1:IH, J], 
because these are all land points. This technique is known as shrinkwrapping [2]. Note that there 
may well be land points within [IFV(J) : ILV( J) , J], and calculations are performed at such points. 
The boundary conditions imposed at the end of each time step will allow for land points, and 
therefore the presence of absence of shrinkwrapping does not affect correctness. The variable inner 
loop extent slows down vectorization, and causes some load inbalance when autotasking (i.e. it 
tends to reduce the substainable Mfiop/s rate). However, it is almost always a net win in overall 
performance on SMP machines to shrinkwrap land, because the time saved by skipping calculations 
is larger than the time lost by less efficient vectorization and parallelization. The /ZILOOP/ COMMON 
contains four sets of shrinkwrap limits, for the four separate staggered grids used in the model 
calculation. 

Some ocean models skip all land calculations, either by using a mask or by splitting the inner 
loop into many loops that are land-free. This allows them to run with simplified boundary cor- 
rections at the end of each time step, but they take a performance hit on every finite difference 
calculation (particularly on vector machines). NLOM typically spends less than 5% of its time in 
boundary routines, and this is easily made up for by increased finite difference code performance. 

3.2 Example of Tiled Data Parallel Code 

Portability often requires different code to be executed on different machine types. Since 
the code for machine X may not even be legal Fortran syntax on machine Y, the appropriate 
code fragment needs to be selected before the Fortran compiler sees the source code. The C 
preprocessor, cpp, is an integral part of standard C and, among other things, allows conditional 
compilation. There are alternatives, but cpp is commonly used as a Fortran preprocessor. In fact, 
many Fortran compilers follow the convention that files ending in .F or .F90 are first passed through 
the C preprocessor before entering the standard compilation phases. Macro subsitution, i.e. the 
replacement of one text string with another, is also a feature of cpp that can be useful in Fortran 
programs, although it sometimes produces counter-intuitive results. NLOM makes extensive use of 
cpp capabilities. The following are a set of global C preprocessor macros, that may be referenced 
by all NLOM subroutines. 
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/*  C-preprocessor macros for customizing the ocean model for a computer */ 

/* Since f77 uses all UPPERCASE, macros use all lowercase */ 

/* region size; rich in powers of 2 */ 

# define ih 512 

# define jh 288 

#if defined(spmd) 
/* generic SPMD message passing version; ip=jp=l, no. proc = ipr*jpr */ 

# define ip    1 

# define jp    1 

# define ipr   4 

# define jpr   4 

#elif defined(hpf) 

/* HPF data parallel version; no. proc = ip*jp */ 

# define ip    8 

# define jp    4 

#elif defined(cm5) 
/* CM5 data parallel version; CMAX and CM Fortran; no. proc = ip*jp/4 */ 

# define ip   16 

# define jp    8 

#elif defined(thread) 
/* Generic autotasked shared memory version; parallelize on jp */ 

# define ip    1 

# define jp   16 
# define shrinkwrap 

#else 
/* single node or shared memory version; parallelize on jh */ 

# define ip    1 

# define jp    1 

# define shrinkwrap 

#endif 

#if defined(ipr) 

/* message passing tile size, IP=JP=1 */ 

# define ihp IH/ipr 

# define jhp JH/jpr 

#else 

/* standard tile size */ 

# define ihp IH/IP 

# define jhp JH/JP 

#endif 

#if defined(hpf) 

/* HPF data parallel compiler directives */ 

# define layout_s2b2(a) !HPF$ DISTRIBUTE a(*,*,BLOCK,BLOCK) 

#elif defined(cm5) 
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/* CM5 data parallel compiler directives */ 

# define layout_s2b2(a) CMF$ LAYOUT a(:SERIAL,:SERIAL,:NEWS,:NEWS) 

#else 

# define layout_s2b2(a) 

#endif 

#if defined(shrinkwrap) 

/* skip most calculations over land */ 

# define ilfm MLF(J,M,N) 

# define ilf ILF(J,M,N) 

# define ill ILL(J,M,N) 

# define illp MLL(J,M,N) 

#else 
/*    do all calculations over land */ 

# define ilfm 1 

# define ilf 2 

# define ill IHP+1 

# define illp IHP+2 

#endif 

Now the tiled pressure gradient subroutine, with the above macro definitions invoked via #include: 

#include "MACROS.cpp" 
SUBROUTINE MHMVP0(DV, PTO.HHYTO, QTDTDY) 

IMPLICIT NONE 

INTEGER   IH,JH,IP,JP,IHP,JHP 

PARAMETER (IH=ih, IP=ip, IHP=ihp) 

PARAMETER (JH=jh, JP=jp, JHP=jhp) 

C 
REAL*4 QTDTDY 
REAL*4 DV( IHP+3,JHP+3,IP,JP), 

&      PT0(IHP+3,JHP+3,IP,JP),HHYT0(IHP+3,JHP+3,IP,JP) 

layout_s2b2(DV) 

layout_s2b2(PT0) 

layout_s2b2(HHYT0) 

#if defined(shrinkwrap) 

INTEGER       ILF,ILL,MLF,MLL 

COMMON/ZILOOP/ ILF(JHP+3,IP,JP),ILL(JHP+3,IP,JP), 

& MLF(JHP+3,IP,JP),MLL(JHP+3,IP,JP) 

SAVE /ZILOOP/ 

#endif 

C 

C    V MOMENTUM EQUATION - PRESSURE GRADIENT TERM. 

C 
INTEGER I.J.M.N 

DO N= 1,JP 

DO M= 1,IP 

DO J= 2.JHP+1 
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DO 1= ilf.ill 

DV(I,J,M,N) = DV(I,J,M,N) - 

&       QTDTDY*(PTO(I,J+l,M,N) - PT0(I,J,M,N))* 

&       HHYTO(I,J,M,N) 

ENDDO; ENDDO; 

ENDDO; ENDDO; 

RETURN 

END 

This is more complicated than the example used to introduce the tiled data parallel technique. The 
halo consists of one row/column on one side and two rows/columns on the other, because an extra 
row/column is required to handle some operations on the staggered grids. Arrays are dimensioned 
(1: IHP+3,1: JHP+3, IP, JP), rather than (0: IHP+2,0: JHP+2, IP, JP). The latter would simplify ar- 
ray indexing, but Fortran compilers are not consistant in how they handle arrays that don't start 
at (1,1,1,1), and so the less transparent dimensioning scheme is used to enhance portability. The 
array size is slightly different than the original. IH no longer includes a halo to handle the global 
ocean periodic boundary (i.e. 512 rather than 515), and JH has been increased to a value rich 
in powers of two (288 vs 287, but much larger differences in size are possible). Array dimensions 
rich in powers of two allow the number of equally sized tiles to be a large power of two, which is 
optimal on some massively parallel machines. The non-standard data types REAL*4 and REAL*8 
are used because they are the most portable way to get 32-bit REAL and 64-bit DOUBLE PRECISION. 
Data parallel compiler directives for array layout are included via macros, which allows both CM 
Fortran and HPF to be supported, and makes it possible to use different layouts on different 
machines. On SPMD machines, there is no advantage to shrinkwrapping because overall speed 
is controlled by the tile with the least land. When shrinkwrapping, "ilf ,ill" is expanded to 
"ILF(J.M.N) ,ILL(J,M,N)" but otherwise it is "2.IHP+1". Tiling actually simplifies shrinkwrap- 
ping. All four staggered grids have the same extent, specified in ILF and ILL, but intermediate 
values may need to be calculated at halo points in which case MLF and/or MLL are used. Note that 
in the shrinkwrapped case, MLF and MLL are not necessarily ILF-1 and ILL+1 because, for example, 
a halo point can be a sea point even if the adjacent non-halo point is land. 

The data parallel style requires all tiles to be the same size and there must be a one to one 
mapping between tiles and a 2-D mesh of processors. This can lead to some inefficiencies in handling 
land. On a SMP machine with relatively few processors, shrinkwrapped tiles don't all perform the 
same amount of work. Better load balance can be obtained by using variable sized tiles, with tile 
sizes chosen so that each tile contains about the same number of ocean points. NLOM reduces SMP 
load inbalance by the alternative technique of having more tiles than processors, e.g. 12 tiles for 2, 
or 3, or 4 processors. On a large message passing machine, some tiles will contain only land and 
hence do no useful work. There is no need to include these empty tiles in the configuration at all. 
This is relatively simple to implement, since the bulk of the model code does not know about other 
tiles in any case. A tiled data parallel code in data parallel mode would have to include all tiles, 
but some could still be missing when running the same code with message passing. NLOM does 
not use this optimization, because the Capacitance Matrix Technique it uses to solve Helmholtz's 
equations performs most calculations at all points and because parallel I/O is more difficult with 
missing tiles. Also, some massively parallel machines have explicit support for, and run optimally 
over, a 2-D grid of processors. On the other hand, most machines can handle missing tiles with 
little communication overhead and the potential saving in time is significant (20% to 40% of points 
are typically over land). NLOM may eventually be extended to skip land tiles, and this is certainly 
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an optimization worth considering for any message passing ocean model. The scalable version of 
the MICOM model [2], includes both the variable tile size and empty tile optimizations. 

3.3 Communication Subroutines 

The following are one line descriptions of all NLOM 2-D array communication routines: 

XCAGET - convert an array from tiled to non-tiled layout 

XCAPUT - convert an array from non-tiled to tiled layout 

XCBGET - extract A(IA:IA+1,JA:JA+1) from a tiled array 

XCEGET - extract the element A(IA,JA) from a tiled array 

XCEWGT - extract the element A(IA,JA) from a tiled wind array 

XCHALT - emergency stop all processes, called by one process 

XCLGET - extract a line from a tiled array 

XCLGT2 - extract a double line from a tiled array 

XCLPUT - place a line of values into a tiled array 

XCMASS - sum a tiled array 
XCMAS1 - sum a sub-region of a tiled array 

XCMINH - find the minimum value in a tiled array 

XCNORM - find the L2 norm of a tiled array 
XCRANG - find value and location of min and max from tiled array 

XCSHFT - periodic shift of a tiled array 
XCSPMD - initialize processor data structures, called once 

XCSTOP - stop all processes, called by all processes 

XCTILB - update a tiled array's halo 
XCTILI - initialize for halo communication, called once 

XCTILR - update a tiled array's halo, for red-black SOR 

XCTILV - partial update of U,V tiled array's halos 

XCTILW - update a tiled wind array's halo 

With the exception of XCHALT, all these routines are assumed to be called with identical argument 
lists by all processors when using SPMD message passing. This is not difficult to arrange, since by 
default all routines are called in this manner in a SPMD run. Most communication routines act 
as implicit barriers that synchronize processor state, i.e. when a processor exits a communication 
routine at the very least all processors that must communicate with it have entered the same 
subroutine. In addition the macro "barrier" is provided for cases where all processors must enter 
a critical section of code before the first processor exits. This is implemented as a macro, rather 
than a subroutine, to reduce overhead for autotasking and data parallel cases which never need 
user invoked barriers (since the compiler synchronizes the processors, whenever necessary). 

NLOM is designed to produce identical results on a given system no matter how many proces- 
sors are used. This greatly improves robustness and simplifies debugging. Global sum routines 
(XCMASS and XCNORM), cannot use the fast algorithms typically implemented by data parallel com- 
pilers and by message passing libraries because these are not independant of the number of proces- 
sors involved in the sum. Instead, a pipelining implementation is used. Pipelining is described in 
the context of a tridiagonal solver in section 3.7. 

Three versions of each communication subroutine are provided; one for message passing, one 
for autotasking/data parallel using Fortran 77 syntax, and one for data parallel using Fortran 90 
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syntax. The routine XCTILB will be used as an example. It updates the halo of a standard tiled 
array. The Fortran 90 data parallel version just uses CSHIFT on a halo-only buffer: 

SUBROUTINE XCTILB(A) 

IMPLICIT NONE 

INTEGER   IH.JH 

PARAMETER (IH=ih, JH=jh) 

C 
INTEGER   IP,JP,IHP,JHP,IHP3,JHP3 

PARAMETER (IP =ip,  JP =jp) 

PARAMETER (IHP =ihp, JHP =jhp) 

PARAMETER (IHP3=ihp3, JHP3=jhp3) 

C 
REAL*4 A(IHP3,JHP3,IP,JP) 

layout_s2b2(A) 

C 
C********** 

c* 
C 1) UPDATE TILE OVERLAP. 

C* 
c********** 
C 

INTRINSIC CSHIFT 

C 
REAL*4 AB1( IHP3,2,IP,JP),AB2( IHP3,1,IP,JP), 

&       AB3( 2,JHP3,IP,JP),AB4( 1,JHP3.IP,JP) 

REAL*4    AB1S(IHP3,2,IP,JP),AB2S(IHP3,1,IP,JP), 
& AB3S(2,JHP3,IP,JP),AB4S(1,JHP3,IP,JP) 

layout_s2b2(ABl) 
layout_s2b2(AB2) 
layout_s2b2(AB3) 
layout_s2b2(AB4) 
layout_s2b2(ABlS) 
layout_s2b2(AB2S) 
layout_s2b2(AB3S) 
layout_s2b2(AB4S) 

C 
AB2    = A(:,JHP+1:JHP+1,:,:) 
AB1    = A(:, 2:3, :,:) 
AB2S = CSHIFT(AB2,SHIFT=-1,DIM=4) 
ABIS = CSHIFT(AB1,SHIFT=+1,DIM=4) 

A(:, 1:1 ,:,:)  = AB2S 
A(:,JHP+2:JHP+3,:,:) = ABIS 

C 
AB4    = AUHP+1: IHP+1,:,:,:) 
AB3    = A(        2:3, :,:,:) 
AB4S = CSHIFT(AB4,SHIFT=-1,DIM=3) 
AB3S = CSHIFT(AB3,SHIFT=+1,DIM=3) 
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A(   1:1   ,:,:,:)= AB4S 

A(IHP+2:IHP+3,:,:,:) = AB3S 

RETURN 

C    END OF XCTILB. 

END 

All versions of XCTILB are doubly periodic, which simplifies programming logic. In cases with closed 
boundaries, the periodic wrapped halos will contain land points, and therefore do no harm. The 
autotasking XCTILB uses indirect addressing to get to the tile it requires: 

SUBROUTINE XCTILB(A) 

IMPLICIT NONE 

INTEGER   IH.JH 
PARAMETER (IH=ih, JH=jh) 

C 
INTEGER   IP,JP,IHP,JHP,IHP3,JHP3 

PARAMETER (IP =ip,  JP =jp) 
PARAMETER (IHP =ihp,  JHP =jhp) 

PARAMETER (IHP3=ihp3, JHP3=jhp3) 

C 
REAL*4 A(IHP3,JHP3,IP,JP) 

layout_s2b2(A) 

C 
INTEGER        MM,MP,NM,NP 

COMMON/ZCTILE/  MM(IP.JP), 

& MP(IP.JP), 
& NM(IP.JP), 

& NP(IP.JP) 

layout_b2(MM) 

layout_b2(MP) 
layout_b2(NM) 

layout_b2(NP) 
SAVE /ZCTILE/ 

C 
C********** 

c* 
C 1) UPDATE TILE OVERLAP. 

C 
C 2) /ZCTILE/ MUST FIRST BE SET BY CALLING XCTILI. 

C* 
c********** 
c 

INTEGER I.J.M.N 

C 
DO 010 N= l.JP 

DO 012 M= l.IP 

DO 110 1= 2.IHP+1 
A(I,   1,M,N) = A(I,JHP+1,M,NM(M,N)) 

A(I,JHP+2,M,H) = A(I,   2,M,NP(M,N)) 
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A(I,JHP+3,M,N) = A(I,   3,M,NP(M,N)) 

110    CONTINUE 

012  CONTINUE 

010 CONTINUE 

C 
DO 020 N= 1,JP 

DO 022 M= l.IP 

DO 210 J= l.JHP+3 
A( 1,J,M,N)  = A(IHP+1,J,MM(M,N),N) 
A(IHP+2,J,M,N)  = A(        2,J,MP(M,N),N) 
A(IHP+3,J,M,N)  = A(        3,J,MP(M,N),N) 

210 CONTINUE 

022      CONTINUE 
020 CONTINUE 

RETURN 
C END OF XCTILB. 

END 

Due to the periodic wrap, MM(1, :)=IP, MP(IP, :)=1, NM(: ,1)=JP, and NP(:. JP)=1. Finally, here 

is the message passing version. ■' '. 

SUBROUTINE XCTILB(A) 

IMPLICIT NONE 

INTEGER   IH.JH 
PARAMETER (IH=ih, JH=jh) 

C 
INTEGER   IP,JP,IPR,JPR,IHP,JHP,IHP3,JHP3 

PARAMETER (IP =ip,  JP -jp) 
PARAMETER (IPR =ipr,  JPR =jpr) 
PARAMETER (IHP =ihp,  JHP =jhp) 
PARAMETER (IHP3=ihp3, JHP3=jhp3) ;. 

C 

C 

REAL*4 A(IHP3,JHP3,IP,JP) 

INTEGER        MPROC.NPROC 

COMMON/CPROCI/  MPROC.NPROC 

SAVE /CPROCI/ . ; 

C ** 
INTEGER        IDPROC 
COMMON/CPROCD/  IDPROC(0:IPR+1,0:JPR+1) 

SAVE /CPROCD/ 

C 

c* 
C 1) UPDATE TILE OVERLAP. 

C* 
C********** 

c 
INTEGER   ILEN.JLEN 
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PARAMETER (ILEN=IHP*IP, JLEN=(JHP+4)*JP) 

C 
C    MAKE BUFFER SIZES A MULTIPLE OF 2. 

C 
REAL*4 AI(IHP,IP,6),AJ(JHP+4,JP.6) 
SAVE   AI.AJ 

C 
INTEGER I.J.M.N 

C 
header 

C 
IF    (JP.NE.l) THEN 

DO 110 N= l.JP-1 
DO 111 M= 1,IP 

--       DO 112 1= 2.IHP+1 r f 
A(I,   1,M,N+1) = A(I,JHP+1,M,N) 
A(I,JHP+2,M,N)  = A(I,   2,M,N+1) 
A(I,JHP+3,M,N)  = A(I,   3.M.N+1) 

112      CONTINUE 
111    CONTINUE vv 
110  CONTINUE 

ENDIF 
IF    (JPR.EQ.l) THEN 

DO 120 M= l.IP 
DO 121 1= l.IHP 

ACI+1,   l.M.l) = A(I+i,JHP+i,M,JP) 
A(I+1,JHP+2,M,JP) = ACI+1,   2,M,D- - 
A(I+1,JHP+3,M,JP) = ACI+1,   3,M,1) 

121    CONTINUE 
120  CONTINUE \ ', 

ELSE 
DO 130 M= l.IP 

DO 131 1= l.IHP 
AKI.M.D = ACI+1, JHP+l.M.JP) 
AICI,M,2) = ACI+1,   2,M,1) 
AICI.M.3) = ACI+1,   3,M,1) ^ 

131    CONTINUE 
130  CONTINUE 

#if definedCmpi) 
CALL MPI_SENDRECVC 

+        AI(1,1,1),  ILEN,mtyper,IDPROCCMPROC,NPROC+l), 9905, 
+        AI(1,1,4),  ILEN,mtyper,IDPROCCMPROC,NPROC-l), 9905, 
+        MPI_COMM_WORLD, MPISTAT, MPIERR) 

CALL MPI_SENDRECVC 
+        AlCl,l,2),2*ILEN,mtyper,IDPR0CCMPR0C,NPR0C-l), 9906, 
+       ' AI(1,1,5),2*ILEN,mtyper,IDPR0C(MPR0C,NPR0C+l), 9906, 
+        MPI_C0MM_W0RLD, MPISTAT, MPIERR) 
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#elif defined(shm) 
barrier 
CALL shmem_getr(AI(l,4), 

+ AI(l.l),     ILEN,     IDPROC(MPROC.NPROC-l)) 
CALL shmem_getr(AI(l,5), 

+ AI(1,2),2*ILEN,     IDPR0C(MPR0C,NPR0C+D) 

#endif 
DO 140 M= 1,IP 

DO 141 1= l.IHP 
A(I+1,   l.M.i) = AI(I,M,4) 
A(I+1,JHP+2,M,JP) = AKI.M.5) 
A(I+1,JHP+3,M,JP) = AI(I,M,6) 

141    CONTINUE 
140  CONTINUE 

ENDIF 1 ! 

IF    (IP.NE.l) THEN 
DO 210 N= l.JP 

DO 211 M= l.IP-1 
DO 212 J= l.JHP+3 vv 

A(   1,J,M+1,N) = A(IHP+1,J,M, N) 
A(IHP+2,J,M, N) = A(   2,J,M+1,N) 
A(IHP+3,J,M, N) = A(   3,J,M+1,N) 

212      CONTINUE 
211    CONTINUE 
210  CONTINUE 

ENDIF 
IF    (IPR.EQ.l) THEN 
DO 220 N= l.JP 

DO 221 J= l.JHP+3 ''-\ 
A(   i.J.l, N) - A(IHP+1,J,IP,N) 
ACIHP+2,J,IP,N) = AC   2.J.1, N) 
A(IHP+3,J,IP,N) = AC   3.J.1, N) 

221    CONTINUE 
220  CONTINUE 

ELSE i \ 
DO 230 N= 1,JP 

DO 231 J= l.JHP+3 
AJCJ.N.l) = A(IHP+i,J,IP,N) 
AJCJ,N,2) = AC   2,J,1, N) 
AJCJ.N.3) = AC   3.J.1, N) 

231    CONTINUE 
230  CONTINUE 

#if definedCmpi) 
CALL MPI_SENDRECVC 

+      AJU.1,1),  JLEN,mtyper,IDPROCCMPROC+l,NPROC), 9907, 
+      AJ(1,1,4), JLEN,mtyper,IDPROC(MPROC-l,NPROC), 9907, 
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+      MPI_COMM_WORLD, MPISTAT, MPIERR) 

CALL MPI_SENDRECV( 
+      AJ(l,l,2),2*JLEN,mtyper,IDPR0C(MPR0C-l,NPR0C), 9908, 

+      AJ(l,l,5),2*JLEN,mtyper,IDPR0C(MPR0C+l,NPR0C), 9908, 

+      MPI_C0MM_W0RLD, MPISTAT, MPIERR) 

#elif defined(shm) 

barrier 
CALL shmem_getr(AJ(l,l,4), 

+ A J (1,1,1),     JLEN,IDPR0C(MPR0C-l,NPR0O) 
CALL shmem_getr(AJ(l,l,5), 

+ AJ(1,1,2),2*JLEN,IDPROC(MPR0C+1,NPROC)) 

#endif 
DO 240 N= 1,JP 

DO 241  J= l.JHP+3 
A( l.J.l,  N)  = AJ(J,N,4) 
A(IHP+2,J,IP,N)  = AJ(J,N,5) 
A(IHP+3,J,IP,N)  = AJ(J,N,6) 

241 CONTINUE 
240      CONTINUE 

ENDIF vs 
RETURN 

C END OF XCTILB. 
END 

This version is longer than the others, because it allows multiple tiles per process and therefore 
includes the autotasking version's logic as well as message passing logic. Multiple tiles per process 
might be used on a SMP cluster, for example, with each process on a separate SMP machine-" 
communicating with other processes on other machines via message passing but parallelizing across- ' 
multiple processors internally via autotasking. We will follow the usual convention of treating 
process and processor as interchangable terms to mean a single message passing entity, even though - 
such an entity may in fact be muliple autotasked processors. Message passing uses either the* 
T3D's SHMEM library or the standard MPI library [13]. Several macros are used to enhance 
portability. The macro "header" allows for a machine specific include file, "mtyper" allows for 
machine specific REAL data type, "barrier" blocks until all processors execute it, and macro 
"shmem_getr" allows for different subroutine names in T3D and SGI versions of the library. The 
variables MPROC and NPROC identify the local processor, with respect to a 2-D mesh or processors, and 
the array IDPROC contains the mapping from the mesh to processor number. IDPROC includes a halo 
to simplify periodic shifts. So, IDPROC (MPROC, NPROC) is the processor number of this processor, 
and its northern neighbour is processor number IDPROC (MPROC, NPR0C+1), etcetera. The processor 
array is configured to periodic wrap in both dimensions. On small workstation clusters it might be 
more efficient to skip the wrap when it isn't needed. SHMEM implements one sided communication, 
and can get values in any static array from another processor, the SAVE statement makes AI and AJ 
static. NLOM requires IHP and JHP to be even, so the first dimensions of AI and A J are also even. 
This avoids performance problems that occur when the local and remote buffers are misaligned in 
memory. The barrier before each shmem_getr call ensures that the buffer, AI or AJ, is up to date 
on the remote processor before it is copied. In general, a barrier would also be required after the 
copies to ensure the remote memory is not altered before it is copied. This is not required here, 
because a total of two barriers are sufficient to protect two buffers (either a classic double buffer 

it 
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or, as here, two independent buffers called in sequence). SHMEM is a particularly good match to 
the tiled data parallel programming style, because global barriers can always be placed between 
each stage of a data parallel algorithm allowing safe access to remote memory. The MPI version 
is not necessarily optimal on a given machine, but it is a portable starting point for a machine- 
specific MPI implementation. An optimized version might not use the buffers AI and AJ, which 
are essential for SHMEM but represent potentialy unnecessary copy operations under MPI. The 
subroutine MPI_SENDRECV is a simple way to implement a circular shift. It sends one set of values 
to one processor while receiving another set from a second processor. Since both ends cooperate 
in passing messages, there is no need for a global barrier. The default SPMD global communicator 
MPI_C0MM_W0RLD is being used here. On some machines a communicator based explicitly on a 2-D 

mesh might be more efficient. 

3.4 Parallel I/O 

NLOM is used on many machine types, so it is important that NLOM files be portable. This 
is acomplished, in part, by using IEEE 754 32-bit floating point values for all I/O. Integer values 
are converted to floating point, because integers can be either 32-bit or 64-bit and are hence non- 
portable. To allow some degree of parallel I/O on distributed memory machines, separate files 
are used for scalars and arrays. Scalar files are formatted or unformatted sequential, and array 
files are Fortran direct access with one 2-D array (representing a single field for a single layer)'-pfer 
record. Array I/O is performed via subroutine calls, which can do I/O in parallel provided the 
resulting file is configured as required. On the Cray C90, an assign statement is used (actually an . . 
ASNUNIT subroutine call) to configure for IEEE I/O. On DEC machines, the f77 compiler switch 
"-convert big_endian" is used to make the files compatable with the majority of Unix systems 
(DEC is little endian, but most others are big endian by default). 

Our implementation of I/O is somewhat unusual, but a natural one for message passing SPMD' ' 
codes. All files are opened either READONLY or WRITEONLY. Scalar files are read independently by 
all processors, but written by the first processor only. All processors can write to STDOUT, Fortran. '■■ 
unit 6, but reading from STDIN, Fortran unit 5, is not allowed because on some machines it is * 
not available to all processors. Fortran units 0 and 7 are not used, because they can have default 
bindings, to STDERR, which are not portable. Under a data parallel or autotasking compiler, scalar 
code and scalar I/O do not see multiple processors and so all I/O is from the single program 
instance. How array files are handled depends on the machine. Writing the entire array from the 
first processor using direct access I/O always works, and is the only choice for single node and 
autotasked cases. However, on distributed memory machines it requires all tiles to be message 
passed to one processor. An alternative is to use direct access I/O from the first processor in each 
row, reading/writing the entire rows's set of tiles as a single record. Each active processor is then 
accessing a different, non-overlapping, record in the file. This is always safe for parallel reading 
and is usually safe for parallel writing if the record length is a multiple of the disk block size. On a 
data parallel machine, copying from a tiled (4-D) array to a native (2-D) array and then using data 
parallel I/O is an option. In general, any method that reads/writes the standard file is allowed. 
There are several efforts underway to produce standards for parallel I/O, but it is not yet clear if 
any of them will be compatable with serial I/O. The NLOM technique maintains portability, but 
does not necessarily allow maximum parallel I/O performance. This is acceptable, because NLOM 
spends much more time computing than doing I/O. Using two files, scalar and array, to hold values 
is less robust than mixing them in the same file. We must rely on file name association to tell us 
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which scalar file goes with which array file, but it is not generally possible to do portable parallel 
I/O on files than mix scalars and arrays. Array files contain all land points. They can be reduced 
in size, after the fact, either by standard file compression techniques, e.g. via the gzip command, 
or run length encoding of land points via the NLOM-specific command lzip, or by converting them 
to the original NLOM history file format (a 24-bit fixed point value file containing no land values 

at all). 

3.5 Serial Optimizations 

The original implementation of NLOM was optimized for multi-processor vector machines, such 
as the Cray C90. Its performance on RISC microprocessor based workstations and SMP servers 
was of less importance. RISC-based systems now represent a much more significant fraction of the - 
high performance computing field. So, the scalable NLOM implementation must be nearly optimal 
over a wider range of machines, including both vector and RISC processors. Vector machines can 
be characterized as having no cache and a very high memory to processor bandwidth. Arrays are f \ 
often used to hold temporaries, and a non-unit stride through an array can be efficient unless the 
stride is a large power of two (e.g. 64 or 128). RISC-based machines always include a cache, often 
a multi-level cache, and have a low memory to cache bandwidth. Non-unit strides through an array 
can be expensive, unless the required elements are already in cache. 

With the exception of the Helmholtz's equation solvers, described in section 3.7, the original 
NLOM code structure was already sufficiently clean to optimize well on RISC systems. There 
were no unnecessary non-unit strides through arrays, and the loop nests were simple enough for the 
compiler to automatically unroll most inner loops. Loop unrolling is essential for good performance 
on a RISC machine, and a few loops had to be unrolled by hand, with the original code retained - 
for vector machines via cpp logic, when one or more compilers.failed to recognize the possibility- - 
of unrolling. A few array temporaries have been replaced by scalars, but the original NLOM code- - 
typically used array temporaries, rather than scalars, only when they reduced the operation count. 
So most array temporaries have been retained.  Using 32-bit REAL's effectively doubles the cache.-. 
size and the memory to cache bandwidth.  This provides a performance boost even on machines • 
that run at the same speed for 32-bit and 64-bit floating point arithmetic. All ocean models should 
be able to use 32-bit IEEE 754 REALs for most calculations. 

Division is always expensive, but it is particularly costly on some RISC systems. NLOM already 
performed the minimum possible number of divisions.   The IEEE 754 floating point arithmetic . . 
standard does not allow division to be replaced by multiplication by a reciprocal. A compiler that f* 
strictly enforces this requirement could not replace: 

DO 1= 1,N 
A(I)  = B(I)/C 

ENDOD 

with: 

RC =  1.0/C 

DO 1=  1,N 
A(I)  = B(I)*RC 

ENDOD 
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even though the latter might be ten times faster. This is one of the few situations where it is still 
advantageous for a programmer to promote loop independent calculations to outside the loop. 

Codes optimized for vector, or data parallel, machines tend to make liberal use of simple vector 
operations, such as Y=X, Y=0.0, and Y=Y+X. These are relatively inexpensive on vector machines, but 
can take a significant amount of time on machines with a low memory bandwidth. The obvious first 
step is to remove unnecessary operations of this sort. However, good programming practice and 
numerical accuracy considerations have lead to many such operations being retained in NLOM. So 
they have optionally been replaced by calls to optimized BLAS, Basic Linear Algebra Subroutines 
[10], where available. The BLAS were designed only to support the needs of linear algebra, and 
not all the required vector operations are included. Moreover, many vendors do not optimize the 
original level-1 (vector-vector) BLAS, because vector lengths are short in linear algebra. Level-2 
(matrix-vector) BLAS [4] and level-3 (matrix-matrix) BLAS [5] have more room for optimization 
and are more important to modern linear algebra applications. There is a need for a standardized 
vector library to facilitate the porting of codes from vector to RISC architectures. This could be 
implemented in assembly language, if necessary, for each RISC architecture. For ocean models, a 
level-2 BLAS extension, subroutine SGESUMC, implementing the matrix (2-D array) operation "B 
= alpha*op(A) + beta*B + gamma", where op(A) is either A or its transpose, would be sufficient 
to cover most simple vector operations (provided cases where the scalars alpha, beta, and gamma 
are zero or one are treated optimally). Cray has a similar BLAS extension, SGESUM, on the T3D 
only. To illustrate that Fortran compilers do not produce optimal code for simple vector operations, 
consider two implementations of the same subroutine. First, the obvious Fortran version. 

SUBROUTINE R4WSET(S,tf,N) 

IMPLICIT NONE 

INTEGER N 

REAL*4 S(N),W 

C 
C    S = W. 

C 
INTEGER I 

C 
DO 1= 1,N 

S(I) = W 

ENDDO 

RETURN 

END 

Then, a version that is often faster on RISC systems. 

SUBROUTINE R4WSET(S,W,N) 

IMPLICIT NONE 

INTEGER N 

REAL*4 S(N),W 

C 

C    S = W. 

C 

r I 

f 1 

it 

INTEGER LOC 

INTEGER IS1 
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REAL*8 W8(l) 
REAL*4 W4(2) 
EQUIVALENCE (W8,W4) 

W4(l) = • W 
W4(2) = ■■ w 
IS1 = LOC(S(D) 
IF (M0D(IS1,8) EQ 0) THEN 

CALL R8WSET(S(1) W8.N/2) 

S(N) = W 
ELSE 

S(l) = W 
CALL R8WSET(S(2) W8 (N-D/2) 
S(N) = W 

ENDIF 
RETURN 
END 

The second version uses the non-standard LOC function to return the address of S(l) in bytes, 
and hence to select S(l) or S(2) as a legal REAL*8 pointer. It then calls a REAL*8 version of tfte 
subroutine with a REAL*8 constant containing two copies of W and about half the original vector 
length. This version is not standard Fortran 77, but it is significantly faster than the original on 
many machines because the memory bandwidth is higher for 8-byte memory writes than for 4-byte 
writes. Presumably, an assembly language version of R4WSET could be faster still. The scalable 
NLOM code includes the option of using optimized BLAS and 64-bit vs 32-bit optimizations when 
appropriate, but a standard vector library optimized for each machine would simplify NLOM logic . 
and further improve performance. 

3.6 Cache Management ;. ?■ 

All ocean models are intrinsically memory intensive. The ratio of floating point operations to 
memory accesses is small, and all array elements are accessed at least once every one or two time 
steps. The previous section discussed essentially local optimizations. This section is concerned with 
global code restructuring for better cache performance. On a SGI Power Challenge, with a 4 MB 
secondary cache, a very small NLOM test case runs at 103 Mflops/s but a more realisticly sized case ■ i 
runs at only 39 Mflop/s. The two cases were not exactly comparable, but since the small case is s 

running almost entirely cache contained it does place an upper bound on what cache optimizations 
can do. The NLOM code slabs on layers, i.e. all lower level routines deal with a single layer and 
the loop over all layers is outside these routines. Moreover, each low level routine implements a 
relatively small and self contained operation, for example there are separate routines for advection 
and diffusion, and there are several involved in calculating pressure gradients. This programming 
style is flexible and easy to maintain, but it does require more passes though each set of layer 
arrays than is strictly necessary. Layer slabs are large and don't typically fit in cache, so low level 
single layer subroutines are not optimal for cache management. A monolithic programming style 
where all the finite difference operations for a time step were performed by one big loop (or a small 
number of loops), would maximize locality of reference, but compilers don't always perform well 
when optimizing very complicated loops and large loops are difficult to maintain. 
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In principle, the message passing version of NLOM should already be configurable for optimal 
cache management. All that is required is to set the tile size so that a complete set of arrays for 
a single layer fit in cache. This would typically result in more tiles, and therefore processes, than 
physical processors. If these processes could be optimally scheduled by the operating system and if 
the per process message passing overhead were small, we would have a near optimal configuration 
with good cache performance. However, most message passing libraries assume there is one dedi- 
cated processor for each process and Unix time slices all processes and schedules them in a round 
robin (which is far from optimal). Optimal scheduling would consist of each process continuing to 
run on a physical processor until it blocks, at a barrier or a message passing operation, at which 
point it sleeps and another process takes over until it blocks, etcetera. A similar scheduling scheme 
is available, and works well, for some thread libraries [11], but schemes that work for light weight 
threads may be impractical for heavy weight processes. The direct use of threads, with one thread 
per tile, would allow better scheduling and might in fact lead to the fastest possible implementation 
on those SMP machines that support the mapping of many threads onto fewer processors. However, 
threads are not a natural fit to the SPMD programming style, and a combination of threads and 
message passing would be required when running across a cluster of SMP systems. Autotasking 
makes use of threads on many machines and, even if autotasking uses heavy weight processes, 
the master-slave algorthm used to parallelize DO-loops provides near optimal scheduling. What 
is required is to move the tile loops out of low level subroutines, and call as many subroutines,as 
possible within each autotasked tile loop. However tile loops cannot contain calls to communication 
routines. In pseudo-code, for IP=1, this might look like: 

DO N= 1,JP 
! LOW LEVEL ROUTINES HANDLE A SINGLE TILE, HENCE (1,1,1,N). 
CALL SUBl(DU(l,l,i,N), U(l,1,1,N,NT0,K), .... ) 
CALL SUB2(DV(1,1,1,N), H(l,1,1,N,NT0,K),   ) 
CALL SUB3(VV(1,1,1,N), V(l,1,1,N,NT0,K),   ) 
CALL SUB4(UV(1,1,1,N), U(l,1,1,N.NTO.K), ....   ) 

ENDDO 
CALL XCTILB(VV) ! COMMUNICATION ROUTINES HANDLE ENTIRE ARRAYS = . 
CALL XCTILB(UV) ! AND STILL CONTAIN INTERNAL DO N= l.JP LOOP '.» 
DO N= l.JP 

CALL SUB5(DV(1,1,1,N), VV(1,1,1,N),V(1,1,1,N,NT0,K) ) 
CALL SUB6(DV(1,1,1,N), VV(1,1,1,N),H(1,1,1,N,NT0,K),   ) 

ENDDO 

As it stands, this is not data parallel unless SUB1 to SUB6 are treated as HPF EXTRINSIC subroutines 
and these, while part of the standard language, are unlikely to be portable. However, compatability 
with data parallel can be maintained by using cpp macros to configure the same code to put tile 
loops either inside or outside low level routines. Compiler directives would typically be needed 
to force autotasking on these N loops, because the compiler would otherwise have to assume the 
subroutine calls were not thread safe. 

Tile loops outside low level routines can also improve cache performance on a single processor. 
So a generic advantage of tiled data parallel over tiled message passing is that each clustered system 
can run a single program that itself handles multiple tiles, either to improve cache performance on a 
single processor, or to use multiple shared memory processors via autotasking. Hybrid paralleliza- 
tion techniques, such as autotasking plus message passing, are likely to be increasing important in 
the future, due to the growing popularity of SMP clusters. 

! ! 

it 
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The NLOM implementation does not currently support tile loops outside low level subroutines. 
A test case that simulated such loops without the synchronization required for communication 
routines, i.e. a best case test, ran 35% faster on a SGI Power Challange, but only 19% faster on 
a Sun SPARCstation 20, compared to the standard scalable code. A test case that was entirely 
cache contained but performed equal work, ran 55% and 29% faster than the standard case on 
SGI and Sun machines respectively. So there is some overhead whenever the model is larger than 
the cache, but a version with high level autotasked loops might perform significantly better than 
autotasking at the lowest loop nest level. The difference in speedup on the Sun and SGI is due 
to the relatively better balance between memory and cache bandwidth on the Sun. The existing 
generation of multi-processor servers, like the SGI Power Challange, typically use a shared memory 
bus that does not scale well as more processors are added. The next generation of servers are more 
likely to use memory crossbar switches, which have better bandwidth and scalability properties, _ 
and should therefore have less need for agressive cache optimization. 

3.7 Parallelizing the Capacitance Matrix Technique i f 

The NLOM gets its intrinsic efficiency from the use of Lagrangian layers in the vertical and 
a semi-implicit treatment of gravity waves. A semi-implicit model treats a linearized pressure 
gradient implicitly within an otherwise explict model. The time step is then independent of gravity 
wave speed, but the continuity equation becomes 3-D elliptic. The NLOM is designed so thatvthe 
3-D elliptic equation can be transformed to modal space, where it becomes a decoupled set of 2-D 
Helmholtz's equations (one per mode) [15]. The internal modes equations can each be solved with 4 . . 
to 10 iterations of Red-Black SOR, a classical iterative method with good scalabilty properties, but ;:' 
the single external mode equation is less well conditioned and is solved by the Capacitance Matrix [■• 
Technique, CMT.  Since explicit finite difference code is highly scalable, the overall scalability of 
NLOM depends on how scalable the CMT solver is. The fully scalable alternative to a semi-implicit - - 
time step is a split-explicit scheme that uses a smaller time step for the external gravity mode only.- - 
The split-explicit scheme is not competitive with semi-implicit on a single processor, because of 
its much higher operation count, but its superior scalability makes it relatively more efficient on a ;. 
large number of processors. Thus our initial design goal was to make the CMT sufficiently scalable * 
so that the semi-implicit model would out perform an equivalent split-explicit version. This goal 
has been exceeded, and NLOM is certainly still the most efficient existing basin-scale ocean model 
on any machine with up to hundreds of processors or even, if the problem is large enough, a few 
thousand processors. 

The CMT [3], is a method for extending fast direct solvers for Helmholtz's equation over a ■*■« 
separable region, such as a rectangle, to arbitrary bounded regions. Perhaps the simplest fast direct 
method is now usually called FACR(O) [6]. For an IH by JH rectangle, it involves JH independent 
forward FFT's each of length IH, followed by IH independent solves of tridiagonal systems of length 
JH, and finally JH independent reverse FFT's of length IH. The CMT involves a FACR(O) solve, 
followed by a boundary correction via the solution of a dense set of linear equations at boundary 
points, and finally a FACR(O) solve to apply the correction to the entire region. The Capacitance 
matrix contains every boundary node that is inside the rectangle, and so it can be very large. For 
a l/32nd degree global region it is about an 100,000 by 100,000 matrix. However the matrix is not 
time dependent, so it can be inverted once per region and then one matrix-vector multiply used 
to solve the system every time step. The memory required for the Capacitance matrix is large, 
but its per time step cost is low and highly scalable. Thus the scalability of CMT depends on the 
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scalability of FACR(O). 

There are two basic classes of solution methods for any operation that requires non-local com- 
munications. In distributed methods, the operation is performed in place with any non-local com- 
munication forming part of the solution process. In transpose methods, the layout of the array 
across processors is rearranged so that the operation itself requries no additional communication. 
Here transpose is used in a more general sense than normal, although on a SMP system the most 
common form of array layout rearrangement is the classical matrix transpose. Distributed methods 
typically involve passing short messages, with the possibility of overlapping computation with com- 
munication. Transpose methods typically involve passing long messages during a communication 
phase, which is separate from the computation phase. On the CM5, NLOM uses calls to the vendor 
provided CMSSL scientific library to perform FFT's and tridiagonal solves.  These implement a .    - 
distributed solution method, but the NLOM arrays must be converted, i.e. transposed, from tiled 
to non-tiled form before calling the CMSSL routines and then converted back to tiled form after- 
wards. Most scalable system vendors do not provide their own parallel, i.e. distributed, scientific f • 
library. So NLOM generically implements FACR(O) by first transposing from a 2-D processor grid 
to a 1-D grid, such that each of the independent FFT's are resident on one processor. This allows 
an optimized single processor FFT routine to be used. The tridiagonal solve could be implemented 
by doing a second transpose to a 1-D grid on the other array dimension, but NLOM instead uses 
a distributed algorithm to save the cost of the transposes. After the tridiagonal solve, the array 
is still in the 1-D layout that is optimal for the reverse FFT's. A FACR(O) implementation would 
normally be completed by a transpose from 1-D back to the standard 2-D array layout, but as _ ;. 
part of the CMT implementation the reverse transpose after the first FACR(O) and the forward 
transpose before the second FACR(O) are not necessary. j\ 

The tridiagonal solver needs to solve IH independent systems each of which is JH long and' - 
distributed across all P=NP*MP processors.   For simplicity, NLOM normally requires that JH be- ■- 
a multiple of P. Using the "burn at both ends" (BABE) solution method doubles the available 
parallelism, and a data parallel implementation of pipelining is used as the primary distributed ; 
algorithm. Pipelining works by passing the results from solving a subset of the systems onto the • 
next tile before continuing with the rest.   In the first pass, start by solving the first L systems 
on processors 1 and P with processors 2 to P-l idle.   In the second pass, processors 2 and P-l 
can work on the first L systems (using the results of the first pass) while processors 1 and P work 
on the second L systems with processors 3 to P-2 idle.   The subsequent passes are similar, but 
eventually processors (starting with 1 and P) run out of work, and go idle waiting for the rest of 
the processors to complete.   Overall, there are IH/L+P/2-1 passes and each processor is idle on U 
P/2-1 of them. Parallelization overhead is therefore theoretically minimized when L=l, but this is 
not optimal from a vectorization or message passing overhead standpoint. The optimal L can be 
determined experimentally, it is typically between 16 and 64 with higher values being appropriate 
for vector machines and for message passing over high latency networks. An important property of 
pipelining is that each tridiagonal system is solved using exactly the same operations, in exactly the 
same order, no matter how many processors, or tiles, are involved. This contributes to the overall 
invariance of the portable CMT implementation to the number of processors used. Maintaining 
processor independance leads to a much more robust code that is easier to debug. This is one 
reason for avoiding vendor provided distributed routines. In fact, the CM5 version of NLOM does 
not maintain exact processor independance because it uses CMSSL FFT and tridiagonal solver 
routines and CM Fortran array sum intrinsics. In this case exact invariance has been given up to 
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obtain acceptable performance. 

The portable scalable CMT solver includes two different Fortran 77 FFT implementations, 
one primarily for vector machines and the other for RISC processors. On many systems a vendor 
provided FFT routine would be used instead. The primary disadvantage of transposing to a 1-D 
tiling is that it requires the second array dimension, JH, to be an integer multiple of the number 
of processors. This can place an unacceptably low limit on the maximum number of processors, 
so NLOM allows the CMT rectangle, IH by JHS, to be larger than the standard model rectangle, 
IH by JH. Using JHS larger than JH makes the transpose operations more expensive, but is usually 
faster overall than the alternative of increasing JH for the entire model. The transpose-based CMT 
solver appears to be scalable to at least 2048 nodes for a large enough region size. Scalability has 
actually been demonstrated on up to 128 T3D nodes, and up to 1024 CM5 vector units (using dis- 
tributed FFTs). A semi-implicit time step, using CMT and red-black SOR to solve the Helmholtz's 
equations, is still the fastest available time stepping scheme for scalable ocean models. 

4. NLOM PERFORMANCE 

Our canonical test case is a six layer hydrodynamic finite depth 1/2 degree global model run 
for one year with the typical amount of I/O and data sampling. This is a relatively small problem, 
512 by 288 by 6, as it has to be to allow multiple runs measuring scalability. The following tabte 
shows times for this case on several computer systems. 

Ta ble 1 - Performance of NLOM on existing HPC plati brms 
MACHINE PARALLEL 

METHOD 
NUM. 

NODES 
TIME MFLOP/S SPEEDUP 

Cray C90 NONE 1 1.36 hrs 355 (REAL*8) 

SGI R8000 NONE 1 9.63 hrs 50 (90 MHz) 

SGI R8000 AUTOTASK 2 4.91 hrs 98 1.96x 1 node 

SGI R8000 AUTOTASK 4 2.47 hrs 195 1.99x 2 nodes 

SGI R8000 AUTOTASK 8 1.46 hrs 331 1.69x 4 nodes 

SGI R8000 AUTOTASK 16 1.08 hrs 447 1.35x 8 nodes 

Cray T3D SHMEM LIBR. 4 5.15 hrs 94 

Cray T3D SHMEM LIBR. 8 2.70 hrs 179 1.91x 4 nodes 

Cray T3D SHMEM LIBR. 16 1.41 hrs 342 1.91x 8 nodes 

Cray T3D SHMEM LIBR. 32 0.81 hrs 596 1.74x 16 nodes 
Cray T3D SHMEM LIBR. 64 0.49 hrs 985 1.65x 32 nodes 

TMC CM5E DATA PARAL. 32 1.56 hrs 309 
TMC CM5E DATA PARAL. 256 0.65 hrs 743 2.40x 32 nodes 

On the Cray C90, Mflop/s are measured using the hardware performance monitor. Mflop/s on 
all other machines are based on the Cray figure, and therefore ignore any additional work performed 
to improve scalability. 

The 1/2 degree model is relatively small. We have demonstated scalability on up to 256 nodes 
on a CM5E for larger problems. For example, a 32-node CM5E is 0.87 times as fast as a C90 
processor on the above 1/2 degree model but at l/8th degree a 256-node CM5E is 9.3 times faster 
than a C90 processor. In this case eight times as many nodes are 10.7 times faster, when the 
problem size is increased by a factor of sixteen. 

if 
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Fig. 1 - Wall time for the 1/2 degree test case on a SGI Power Challenge, compared to 98% parallelization curve 
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Fig. 2 - Total CPU time for the 1/2 degree test case on a Cray T3D: (a) entire model, (b) theoretical 99.2% parallel 
curve, (c) explicit finite difference code, (d) SOR solver, (e) CMT solver, (f) overhead. 
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Fig. 3 - Total CPU time spent in CMT solver on a Cray T3D: (a) entire solver, (b) matrix-vector multiply, (c) |TT, 
(d) tridiagonal solver, (e) 2-D/l-D transposes, (f) other. 

Figure 1 plots wall time against number of processors for the test case on a SGI Power Challenge. 
This is a close fit to Amdahl's Law for 98% parallelization. The measured performance drops below 
the theoretical curve for 16 processors. This could either be due to load imbalance or to a lack of 
memory bandwidth.  Figure 2 plots total time against number of processors for the test case on-.. 
a Cray T3D. Divide total time by the number of processors to" get wall time. Perfect scalability, 
would produce a horizontal curve. The model is 99.2% parallel. The explicit finite difference code 
is essentially 100% parallel, as expected.   The SOR and CMT solvers take about 18% and 9%,, 
respectively, of the total time and show good scalability. All the rest of the model, the overhead,, 
represents 5% of the total on 4 nodes but 24% on 64 nodes. 

Figure 3 plots total time against number of processors for the test case CMT solver on a Cray 
T3D. The large jump in total time on 64 nodes is primarily due to the fact that this solver is 
based on a 512 by 384 element array, rather than the model's 512 by 288 array. The original array 
can't be used on 64 nodes because 288 is not a multiple of 64. As expected, the matrix-vector 
multiply and FFT phases are 100% parallel. The transposes between ID and 2D are a relatively 
small percentage of the total solver time, and show good scalability. The pipelined tridiagional 
solver has some load inbalance (from the pipelining) and many short off-chip transfers. Even so, 
scalability is quite good. The rest of the CMT solver has a very small operation count, but requires 
communication and is the factor that limits the overall scalability of the solver as a whole. Figure 
4 plots total time against number of processors for the test case SOR solver on a Cray T3D. As 
usual, the finite difference code is 100% parallel. The halo updates are not perfectly scalable, but 
are a small fraction of the total even on 64 nodes. The calculation of the L2 norm of the residual 
requires global communication, and is the factor that limits the overall scalability of the solver as 
a whole. The requirement that the model be bit-for-bit reproducable on an arbitrary number of 
processors prevents us from using the fastest global sum algorithms. 

H 
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Fig. 4 - Total CPU time spent in SOR solver on a Cray T3D: (a) entire solver, (b) finite difference code, (c) halo 
updates, (d) 12 norm. 
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Fig. 5 - Percentage of total CPU time spent in major overhead tasks on a Cray T3D: (a) ports, (b) halo updates, (c) 
land boundary conditions, (d) friction patches. 
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Fig. 6 - Percentage of total CPU time spent in minor overhead tasks on a Cray T3D: (a) halo updates, (b) mas,s 
calculations, (c) data sampling, (d) I/O. 

Figure 5 plots the percentage of total time against number of processors for the major overhead" 
tasks on a Cray T3D. These are all involved in boundary condition processing. Conventional' 
boundary condition processing, for no-slip coastlines and zeroing out land areas, scales well and is 
only about 1% of the total time. Halo updates scale less well, but are only 3% of the total time on. 
64 nodes. The global region has many friction patches to control flow through straits that are no« 
well resolved on the model grid. These are less scalable than halo updates, but also represent only 
3% of total time on 64 nodes. By far the largest factor in overall scalability are the port boundary 
conditions. These are applied at 65N in the Atlantic to simulate the effects of the GINSea, which 
is not included in the model, and in particular to drive the global thermohaline circulation. The 
operation count for the ports is very small, but it is all "serial" code and therefore 0% scalable. 
Additional optimization of port routines is planned for the next release of NLOM. Figure 6 plots 
the percentage of total time against number of processors for the overhead tasks on a Cray T3D 
that are not on figure 5. The halo update curve is on both figures as a point of reference. The 
model's formulation of mixing requires the calculation of the region-wide mass for each layer every 
time step. This is similar to the L2 norm calculation in the SOR solver, with similar scalability 
properties, but is only 1.4% of the total time on 64 nodes. Data sampling is performed every few 
days throughout the simulation, to produce statistics on transport across sections, mixing in sub- 
regions, etcetera. The operations are not very scalable, but are relatively infrequent and represent 
only 2.5% of the total time on 64 nodes. The model writes out a restart record containing all 
prognostic variables every month. In principle, this I/O is performed in parallel on the T3D but 
scalability is poor. The decrease in time from 4 to 8 processors is due to the fact that smaller 
buffers had to be used on four processors because of memory constaints. 
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5. SUMMARY 

The scalable NLOM implementation has achieved its design goals of running exactly the same 
model source code and model data files on a wide range of computer systems from many vendors. 
Scalability is based primarily on the tiled data parallel parallel programming paradigm. This is 
sufficiently general that the actual technique used on a given machine to obtain scalability can be 
selected at compile time from: (i) data parallel, (ii) SPMD message passing, (iii) autotasking, or (iv) 
SPMD message passing between multi-processor autotasked systems. Times from actual practical 
model runs presented in this report demonstrate good scalability across the range of processor 
complexes available within DoD today. As larger machines become available, problem sizes (i.e. 
model resolution) will increase and scalability should be possible up to at least 2048 processors. 
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